
1

UNIT – 2

Java Package

A java package is a group of similar types of classes, interfaces and sub-packages.

Package in java can be categorized in two form, built-in package and user-defined package.

There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql etc.

Here, we will have the detailed learning of creating and using user-defined packages.

Advantages of Java Package

1) Java package is used to categorize the classes and interfaces so that they can be easily maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

Simple example of java package

The package keyword is used to create a package in java.

//save as Simple.java

package mypack;

public class Simple{

 public static void main(String args[]){

 System.out.println("Welcome to package");

 } }

2

How to compile java package

If you are not using any IDE, you need to follow the syntax given below:

1. javac -d directory javafilename

For example

1. javac -d . Simple.java

The -d switch specifies the destination where to put the generated class file. You can use any directory name

like /home (in case of Linux), d:/abc (in case of windows) etc. If you want to keep the package within the same

directory, you can use . (dot).

How to run java package program

You need to use fully qualified name e.g. mypack.Simple etc to run the class.

To Compile: javac -d . Simple.java

To Run: java mypack.Simple

Output:Welcome to package

The -d is a switch that tells the compiler where to put the class file i.e. it represents destination. The .

represents the current folder.

How to access package from another package?

There are three ways to access the package from outside the package.

1. import package.*;

2. import package.classname;

3. fully qualified name.

1) Using packagename.*

If you use package.* then all the classes and interfaces of this package will be accessible but not subpackages.

The import keyword is used to make the classes and interface of another package accessible to the current

package.

Example of package that import the packagename.*

//save by A.java

package pack;

public class A{

3

 public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.*;

class B{

 public static void main(String args[]){

 A obj = new A();

 obj.msg();

 }

}

Output:Hello

2) Using packagename.classname

If you import package.classname then only declared class of this package will be accessible.

Example of package by import package.classname

//save by A.java

package pack;

public class A{

 public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.A;

class B{

 public static void main(String args[]){

 A obj = new A();

 obj.msg();

 }

}

Output:Hello

3) Using fully qualified name

If you use fully qualified name then only declared class of this package will be accessible. Now there is no need

to import. But you need to use fully qualified name every time when you are accessing the class or interface.

4

It is generally used when two packages have same class name e.g. java.util and java.sql packages contain Date

class.

Example of package by import fully qualified name

//save by A.java

package pack;

public class A{

 public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

class B{

 public static void main(String args[]){

 pack.A obj = new pack.A();//using fully qualified name

 obj.msg();

 }

}

Output:Hello

Note: If you import a package, subpackages will not be imported.

If you import a package, all the classes and interface of that package will be imported excluding the classes and

interfaces of the subpackages. Hence, you need to import the subpackage as well.

Note: Sequence of the program must be package then import then class.

Subpackage in java

Package inside the package is called the subpackage. It should be created to categorize the
package further.

Let's take an example, Sun Microsystem has definded a package named java that contains many

classes like System, String, Reader, Writer, Socket etc. These classes represent a particular group

e.g. Reader and Writer classes are for Input/Output operation, Socket and ServerSocket classes are
for networking etc and so on. So, Sun has subcategorized the java package into subpackages such as
lang, net, io etc. and put the Input/Output related classes in io package, Server and ServerSocket
classes in net packages and so on.

The standard of defining package is domain.company.package e.g. com.javatpoint.bean or org.sssit.dao.

Example of Subpackage

package com.javatpoint.core;

5

class Simple{

 public static void main(String args[]){

 System.out.println("Hello subpackage");

 }

}

To Compile: javac -d . Simple.java

To Run: java com.javatpoint.core.Simple

Output:Hello subpackage

How to send the class file to another directory or drive?

There is a scenario, I want to put the class file of A.java source file in classes folder of c: drive. For

example:

//save as Simple.java

package mypack;

public class Simple{

 public static void main(String args[]){

 System.out.println("Welcome to package");

 }

}

To Compile:

e:\sources> javac -d c:\classes Simple.java

To Run:

To run this program from e:\source directory, you need to set classpath of the directory where the class file resides.

e:\sources> set classpath=c:\classes;.;

e:\sources> java mypack.Simple

Another way to run this program by -classpath switch of java:

The -classpath switch can be used with javac and java tool.

To run this program from e:\source directory, you can use -classpath switch of java that tells where
to look for class file. For example:

e:\sources> java -classpath c:\classes mypack.Simple

6

Output:Welcome to package

Access Protection

• Subclasses in the same package

• Non-subclasses in the same package

• Subclasses in different packages

• Classes that are neither in the same package nor subclasses

The three access modifiers, private, public, and protected, provide a variety of ways to produce the many

levels of access required by these categories. Table 9-1 sums up the interactions.

While Java’s access control mechanism may seem complicated, we can simplify it as follows. Anything

declared public can be accessed from anywhere. Anything declared private cannot be seen outside of its class.

When a member does not have an explicit access specification, it is visible to subclasses as well as to other

classes in the same package. This is the default access. If you want to allow an element to be seen outside your

current package, but only to classes that subclass your class directly, then declare that element protected.

Table 9-1 applies only to members of classes. A non-nested class has only two possible access levels: default

and public. When a class is declared as public, it is accessible by any other code. If a class has default access,

then it can only be accessed by other code within its same package. When a class is public, it must be the only

public class declared in the file, and the file must have the same name as the class.

Interface in Java

An interface in java is a blueprint of a class. It has static constants and abstract methods.

The interface in java is a mechanism to achieve abstraction. There can be only abstract methods in the java

interface not method body. It is used to achieve abstraction and multiple inheritance in Java.

Java Interface also represents IS-A relationship.

It cannot be instantiated just like abstract class.

Why use Java interface?

There are mainly three reasons to use interface. They are given below.

o It is used to achieve abstraction.

7

o By interface, we can support the functionality of multiple inheritance.

o It can be used to achieve loose coupling.

Java 8 Interface Improvement

Since Java 8, interface can have default and static methods which is discussed later.

Internal addition by compiler

The java compiler adds public and abstract keywords before the interface method. More, it adds public, static

and final keywords before data members.

In other words, Interface fields are public, static and final by default, and methods are public and abstract.

Understanding relationship between classes and interfaces

As shown in the figure given below, a class extends another class, an interface extends another interface but

a class implements an interface.

Java Interface Example

In this example, Printable interface has only one method, its implementation is provided in the A class.

interface printable{

void print();

}

class A6 implements printable{

8

public void print(){System.out.println("Hello");}

public static void main(String args[]){

A6 obj = new A6();

obj.print();

 }

}

Output:

Hello

Java Interface Example: Drawable

In this example, Drawable interface has only one method. Its implementation is provided by Rectangle and

Circle classes. In real scenario, interface is defined by someone but implementation is provided by different

implementation providers. And, it is used by someone else. The implementation part is hidden by the user

which uses the interface.

File: TestInterface1.java

//Interface declaration: by first user

interface Drawable{

void draw();

}

//Implementation: by second user

class Rectangle implements Drawable{

public void draw(){System.out.println("drawing rectangle");}

}

class Circle implements Drawable{

public void draw(){System.out.println("drawing circle");}

}

//Using interface: by third user

class TestInterface1{

public static void main(String args[]){

Drawable d=new Circle();//In real scenario, object is provided by method e.g. getDrawable()

d.draw();

}}

Output:

drawing circle

Java Interface Example: Bank

9

Let's see another example of java interface which provides the implementation of Bank interface.

File: TestInterface2.java

interface Bank{

float rateOfInterest();

}

class SBI implements Bank{

public float rateOfInterest(){return 9.15f;}

}

class PNB implements Bank{

public float rateOfInterest(){return 9.7f;}

}

class TestInterface2{

public static void main(String[] args){

Bank b=new SBI();

System.out.println("ROI: "+b.rateOfInterest());

}}

Output:

ROI: 9.15

Multiple inheritance in Java by interface

If a class implements multiple interfaces, or an interface extends multiple interfaces i.e. known as multiple

inheritance.

interface Printable{

void print();

}

10

interface Showable{

void show();

}

class A7 implements Printable,Showable{

public void print(){System.out.println("Hello");}

public void show(){System.out.println("Welcome");}

public static void main(String args[]){

A7 obj = new A7();

obj.print();

obj.show();

 }

}

Output:Hello

 Welcome

Q) Multiple inheritance is not supported through class in java but it is possible by interface, why?

As we have explained in the inheritance chapter, multiple inheritance is not supported in case of class because

of ambiguity. But it is supported in case of interface because there is no ambiguity as implementation is

provided by the implementation class. For example:

interface Printable{

void print();

}

interface Showable{

void print();

}

class TestInterface3 implements Printable, Showable{

public void print(){System.out.println("Hello");}

public static void main(String args[]){

TestInterface3 obj = new TestInterface3();

obj.print();

 }

}

Output:

Hello

As you can see in the above example, Printable and Showable interface have same methods but its

implementation is provided by class TestTnterface1, so there is no ambiguity.

11

Interface inheritance

A class implements interface but one interface extends another interface .

interface Printable{

void print();

}

interface Showable extends Printable{

void show();

}

class TestInterface4 implements Showable{

public void print(){System.out.println("Hello");}

public void show(){System.out.println("Welcome");}

public static void main(String args[]){

TestInterface4 obj = new TestInterface4();

obj.print();

obj.show();

 }

}

Output:

Hello

Welcome

Java Nested Interface

An interface i.e. declared within another interface or class is known as nested interface. The nested interfaces

are used to group related interfaces so that they can be easy to maintain. The nested interface must be referred

by the outer interface or class. It can't be accessed directly.

Points to remember for nested interfaces

There are given some points that should be remembered by the java programmer.

o Nested interface must be public if it is declared inside the interface but it can have any access modifier if

declared within the class.

o Nested interfaces are declared static implicitely.

Syntax of nested interface which is declared within the interface

interface interface_name{

 ...

12

 interface nested_interface_name{

 ...

 }

}

Syntax of nested interface which is declared within the class

class class_name{

 ...

 interface nested_interface_name{

 ...

 }

}

Example of nested interface which is declared within the interface

In this example, we are going to learn how to declare the nested interface and how we can access it.

interface Showable{

 void show();

 interface Message{

 void msg();

 }

}

class TestNestedInterface1 implements Showable.Message{

 public void msg(){System.out.println("Hello nested interface");}

 public static void main(String args[]){

 Showable.Message message=new TestNestedInterface1();//upcasting here

 message.msg();

 }

}

Output:hello nested interface

As you can see in the above example, we are acessing the Message interface by its outer interface Showable

because it cannot be accessed directly. It is just like almirah inside the room, we cannot access the almirah

directly because we must enter the room first. In collection frameword, sun microsystem has provided a

nested interface Entry. Entry is the subinterface of Map i.e. accessed by Map.Entry.

13

Internal code generated by the java compiler for nested interface Message

The java compiler internally creates public and static interface as displayed below:.

public static interface Showable$Message

{

 public abstract void msg();

}

Example of nested interface which is declared within the class

Let's see how can we define an interface inside the class and how can we access it.

class A{

 interface Message{

 void msg();

 }

}

class TestNestedInterface2 implements A.Message{

 public void msg(){System.out.println("Hello nested interface");}

 public static void main(String args[]){

 A.Message message=new TestNestedInterface2();//upcasting here

 message.msg();

 }

}

Output:hello nested interface

Difference between abstract class and interface

Abstract class and interface both are used to achieve abstraction where we can declare the abstract methods.

Abstract class and interface both can't be instantiated.

But there are many differences between abstract class and interface that are given below.

14

Stream based I/O(java.io)

Java I/O (Input and Output) is used to process the input and produce the output.

Java uses the concept of stream to make I/O operation fast. The java.io package contains all the classes required

for input and output operations.

We can perform file handling in java by Java I/O API.

Stream:

A stream is a sequence of data.In Java a stream is composed of bytes. It's called a stream because it is like a

stream of water that continues to flow.

In java, 3 streams are created for us automatically. All these streams are attached with console.

1) System.out: standard output stream

2) System.in: standard input stream

15

3) System.err: standard error stream

Let's see the code to print output and error message to the console.

System.out.println("simple message");

System.err.println("error message");

Let's see the code to get input from console.

int i=System.in.read();//returns ASCII code of 1st character

System.out.println((char)i);//will print the character

Byte Streams

Java byte streams are used to perform input and output of 8-bit bytes. Though there are many classes related to

byte streams but the most frequently used classes are, FileInputStream and FileOutputStream.

Character Streams

Java Byte streams are used to perform input and output of 8-bit bytes, whereas Java Character streams are

used to perform input and output for 16-bit unicode. Though there are many classes related to character

streams but the most frequently used classes are, FileReader and FileWriter. Though internally FileReader

uses FileInputStream and FileWriter uses FileOutputStream but here the major difference is that FileReader

reads two bytes at a time and FileWriter writes two bytes at a time.

OutputStream vs InputStream

The explanation of OutputStream and InputStream classes are given below:

OutputStream

Java application uses an output stream to write data to a destination, it may be a file, an array, peripheral device

or socket.

InputStream

Java application uses an input stream to read data from a source, it may be a file, an array, peripheral device or

socket.

Let's understand working of Java OutputStream and InputStream by the figure given below.

16

OutputStream class

OutputStream class is an abstract class. It is the super class of all classes representing an output stream of bytes.

An output stream accepts output bytes and sends them to some sink.

Useful methods of OutputStream

Method Description

1) public void write(int)throws

IOException

is used to write a byte to the current output stream.

2) public void write(byte[])throws

IOException

is used to write an array of byte to the current output

stream.

3) public void flush()throws IOException flushes the current output stream.

4) public void close()throws IOException is used to close the current output stream.

OutputStream Hierarchy

17

InputStream class

InputStream class is an abstract class. It is the super class of all classes representing an input stream of bytes.

Useful methods of InputStream

Method Description

1) public abstract int read()throws

IOException

reads the next byte of data from the input stream. It

returns -1 at the end of file.

2) public int available()throws

IOException

returns an estimate of the number of bytes that can be

read from the current input stream.

3) public void close()throws

IOException

is used to close the current input stream.

InputStream Hierarchy

Java FileOutputStream Class

Java FileOutputStream is an output stream used for writing data to a file.

If you have to write primitive values into a file, use FileOutputStream class. You can write byte-oriented as well

as character-oriented data through FileOutputStream class. But, for character-oriented data, it is preferred to use

FileWriter than FileOutStream.

FileOutputStream class declaration

Let's see the declaration for Java.io.FileOutputStream class:

public class FileOutputStream extends OutputStream

18

FileOutputStream class methods

Method Description

protected void finalize() It is sued to clean up the connection with the file output stream.

void write(byte[] ary) It is used to write ary.length bytes from the byte array to the file

output stream.

void write(byte[] ary, int off,

int len)

It is used to write len bytes from the byte array starting at

offset off to the file output stream.

void write(int b) It is used to write the specified byte to the file output stream.

FileChannel getChannel() It is used to return the file channel object associated with the file

output stream.

FileDescriptor getFD() It is used to return the file descriptor associated with the stream.

void close() It is used to closes the file output stream.

Java FileOutputStream Example 1: write byte

import java.io.FileOutputStream;

public class FileOutputStreamExample {

 public static void main(String args[]){

 try{

 FileOutputStream fout=new FileOutputStream("D:\\testout.txt");

 fout.write(65);

 fout.close();

 System.out.println("success...");

 }catch(Exception e){System.out.println(e);}

 }

}

Output:

19

Success...

The content of a text file testout.txt is set with the data A.

testout.txt

A

Java FileOutputStream example 2: write string

import java.io.FileOutputStream;

public class FileOutputStreamExample {

 public static void main(String args[]){

 try{

 FileOutputStream fout=new FileOutputStream("D:\\testout.txt");

 String s="Welcome to javaTpoint.";

 byte b[]=s.getBytes();//converting string into byte array

 fout.write(b);

 fout.close();

 System.out.println("success...");

 }catch(Exception e){System.out.println(e);}

 }

}

Output:

Success...

The content of a text file testout.txt is set with the data Welcome to javaTpoint.

testout.txt

Welcome to javaTpoint.

Java FileInputStream Class

Java FileInputStream class obtains input bytes from a file. It is used for reading byte-oriented data (streams of

raw bytes) such as image data, audio, video etc. You can also read character-stream data. But, for reading

streams of characters, it is recommended to use FileReader class.

Java FileInputStream class declaration

Let's see the declaration for java.io.FileInputStream class:

1. public class FileInputStream extends InputStream

Java FileInputStream class methods

20

Method Description

int available() It is used to return the estimated number of bytes that can be read

from the input stream.

int read() It is used to read the byte of data from the input stream.

int read(byte[] b) It is used to read up to b.length bytes of data from the input stream.

int read(byte[] b, int off,

int len)

It is used to read up to len bytes of data from the input stream.

long skip(long x) It is used to skip over and discards x bytes of data from the input

stream.

FileChannel

getChannel()

It is used to return the unique FileChannel object associated with the

file input stream.

FileDescriptor getFD() It is used to return the FileDescriptor object.

protected void finalize() It is used to ensure that the close method is call when there is no more

reference to the file input stream.

void close() It is used to closes the stream.

Java FileInputStream example 1: read single character

import java.io.FileInputStream;

public class DataStreamExample {

 public static void main(String args[]){

 try{

 FileInputStream fin=new FileInputStream("D:\\testout.txt");

 int i=fin.read();

 System.out.print((char)i);

 fin.close();

21

 }catch(Exception e){System.out.println(e);}

 }

 }

Note: Before running the code, a text file named as "testout.txt" is required to be created. In this file, we are

having following content:

Welcome to javatpoint.

After executing the above program, you will get a single character from the file which is 87 (in byte form). To

see the text, you need to convert it into character.

Output:

W

Java FileInputStream example 2: read all characters

import java.io.FileInputStream;

public class DataStreamExample {

 public static void main(String args[]){

 try{

 FileInputStream fin=new FileInputStream("D:\\testout.txt");

 int i=0;

 while((i=fin.read())!=-1){

 System.out.print((char)i);

 }

 fin.close();

 }catch(Exception e){System.out.println(e);}

 }

 }

Output:

Welcome to javaTpoint

Java BufferedOutputStream Class

Java BufferedOutputStream class is used for buffering an output stream. It internally uses buffer to store data. It

adds more efficiency than to write data directly into a stream. So, it makes the performance fast.

For adding the buffer in an OutputStream, use the BufferedOutputStream class. Let's see the syntax for adding

the buffer in an OutputStream:

22

1. OutputStream os= new BufferedOutputStream(new FileOutputStream("D:\\IO Package\\testout.txt"));

Java BufferedOutputStream class declaration

Let's see the declaration for Java.io.BufferedOutputStream class:

1. public class BufferedOutputStream extends FilterOutputStream

Java BufferedOutputStream class constructors

Constructor Description

BufferedOutputStream(OutputStream os) It creates the new buffered output stream which is used for

writing the data to the specified output stream.

BufferedOutputStream(OutputStream os,

int size)

It creates the new buffered output stream which is used for

writing the data to the specified output stream with a

specified buffer size.

Java BufferedOutputStream class methods

Method Description

void write(int b) It writes the specified byte to the buffered output stream.

void write(byte[] b, int

off, int len)

It write the bytes from the specified byte-input stream into a specified

byte array, starting with the given offset

void flush() It flushes the buffered output stream.

Example of BufferedOutputStream class:

In this example, we are writing the textual information in the BufferedOutputStream object which is connected

to the FileOutputStream object. The flush() flushes the data of one stream and send it into another. It is required

if you have connected the one stream with another.

import java.io.*;

public class BufferedOutputStreamExample{

23

public static void main(String args[])throws Exception{

 FileOutputStream fout=new FileOutputStream("D:\\testout.txt");

 BufferedOutputStream bout=new BufferedOutputStream(fout);

 String s="Welcome to javaTpoint.";

 byte b[]=s.getBytes();

 bout.write(b);

 bout.flush();

 bout.close();

 fout.close();

 System.out.println("success");

}

}

Output:

Success

testout.txt

Welcome to javaTpoint.

Java BufferedInputStream Class

Java BufferedInputStream class is used to read information from stream. It internally uses buffer mechanism to

make the performance fast.

The important points about BufferedInputStream are:

o When the bytes from the stream are skipped or read, the internal buffer automatically refilled from the

contained input stream, many bytes at a time.

o When a BufferedInputStream is created, an internal buffer array is created.

Java BufferedInputStream class declaration

Let's see the declaration for Java.io.BufferedInputStream class:

1. public class BufferedInputStream extends FilterInputStream

Java BufferedInputStream class constructors

Constructor Description

24

BufferedInputStream(InputStream IS) It creates the BufferedInputStream and saves it argument, the

input stream IS, for later use.

BufferedInputStream(InputStream IS,

int size)

It creates the BufferedInputStream with a specified buffer

size and saves it argument, the input stream IS, for later use.

Java BufferedInputStream class methods

Method Description

int available() It returns an estimate number of bytes that can be read from the input stream

without blocking by the next invocation method for the input stream.

int read() It read the next byte of data from the input stream.

int read(byte[] b, int

off, int ln)

It read the bytes from the specified byte-input stream into a specified byte

array, starting with the given offset.

void close() It closes the input stream and releases any of the system resources associated

with the stream.

void reset() It repositions the stream at a position the mark method was last called on this

input stream.

void mark(int

readlimit)

It sees the general contract of the mark method for the input stream.

long skip(long x) It skips over and discards x bytes of data from the input stream.

boolean

markSupported()

It tests for the input stream to support the mark and reset methods.

Example of Java BufferedInputStream

Let's see the simple example to read data of file using BufferedInputStream:

25

import java.io.*;

public class BufferedInputStreamExample{

 public static void main(String args[]){

 try{

 FileInputStream fin=new FileInputStream("D:\\testout.txt");

 BufferedInputStream bin=new BufferedInputStream(fin);

 int i;

 while((i=bin.read())!=-1){

 System.out.print((char)i);

 }

 bin.close();

 fin.close();

 }catch(Exception e){System.out.println(e);}

 }

}

Here, we are assuming that you have following data in "testout.txt" file:

javaTpoint

Output:

javaTpoint

Java SequenceInputStream Class

Java SequenceInputStream class is used to read data from multiple streams. It reads data sequentially (one by

one).

Java SequenceInputStream Class declaration

Let's see the declaration for Java.io.SequenceInputStream class:

1. public class SequenceInputStream extends InputStream

Constructors of SequenceInputStream class

Constructor Description

SequenceInputStream(InputStream s1,

InputStream s2)

creates a new input stream by reading the data of two

input stream in order, first s1 and then s2.

26

SequenceInputStream(Enumeration e) creates a new input stream by reading the data of an

enumeration whose type is InputStream.

Methods of SequenceInputStream class

Method Description

int read() It is used to read the next byte of data from the input stream.

int read(byte[] ary, int off, int

len)

It is used to read len bytes of data from the input stream into the array of

bytes.

int available() It is used to return the maximum number of byte that can be read from

an input stream.

void close() It is used to close the input stream.

Java SequenceInputStream Example

In this example, we are printing the data of two files testin.txt and testout.txt.

import java.io.*;

class InputStreamExample {

 public static void main(String args[])throws Exception{

 FileInputStream input1=new FileInputStream("D:\\testin.txt");

 FileInputStream input2=new FileInputStream("D:\\testout.txt");

 SequenceInputStream inst=new SequenceInputStream(input1, input2);

 int j;

 while((j=inst.read())!=-1){

 System.out.print((char)j);

 }

 inst.close();

 input1.close();

 input2.close();

 }

}

27

Here, we are assuming that you have two files: testin.txt and testout.txt which have following information:

testin.txt:

Welcome to Java IO Programming.

testout.txt:

It is the example of Java SequenceInputStream class.

After executing the program, you will get following output:

Output:

Welcome to Java IO Programming. It is the example of Java SequenceInputStream class.

Example that reads the data from two files and writes into another file

In this example, we are writing the data of two files testin1.txt and testin2.txt into another file

named testout.txt.

import java.io.*;

class Input1{

 public static void main(String args[])throws Exception{

 FileInputStream fin1=new FileInputStream("D:\\testin1.txt");

 FileInputStream fin2=new FileInputStream("D:\\testin2.txt");

 FileOutputStream fout=new FileOutputStream("D:\\testout.txt");

 SequenceInputStream sis=new SequenceInputStream(fin1,fin2);

 int i;

 while((i=sis.read())!=-1)

 {

 fout.write(i);

 }

 sis.close();

 fout.close();

 fin1.close();

 fin2.close();

 System.out.println("Success..");

 }

}

Output:

28

Succeess...

testout.txt:

1. Welcome to Java IO Programming. It is the example of Java SequenceInputStream class.

SequenceInputStream example that reads data using enumeration

If we need to read the data from more than two files, we need to use Enumeration. Enumeration object can be

obtained by calling elements() method of the Vector class. Let's see the simple example where we are reading

the data from 4 files: a.txt, b.txt, c.txt and d.txt.

import java.io.*;

import java.util.*;

class Input2{

public static void main(String args[])throws IOException{

//creating the FileInputStream objects for all the files

FileInputStream fin=new FileInputStream("D:\\a.txt");

FileInputStream fin2=new FileInputStream("D:\\b.txt");

FileInputStream fin3=new FileInputStream("D:\\c.txt");

FileInputStream fin4=new FileInputStream("D:\\d.txt");

//creating Vector object to all the stream

Vector v=new Vector();

v.add(fin);

v.add(fin2);

v.add(fin3);

v.add(fin4);

//creating enumeration object by calling the elements method

Enumeration e=v.elements();

//passing the enumeration object in the constructor

SequenceInputStream bin=new SequenceInputStream(e);

int i=0;

while((i=bin.read())!=-1){

System.out.print((char)i);

}

bin.close();

fin.close();

fin2.close();

}

}

The a.txt, b.txt, c.txt and d.txt have following information:

29

a.txt:

Welcome

b.txt:

to

c.txt:

java

d.txt:

programming

Output:

Welcometojavaprogramming

Java ByteArrayOutputStream Class

Java ByteArrayOutputStream class is used to write common data into multiple files. In this stream, the data is

written into a byte array which can be written to multiple streams later.

The ByteArrayOutputStream holds a copy of data and forwards it to multiple streams.

The buffer of ByteArrayOutputStream automatically grows according to data.

Java ByteArrayOutputStream class declaration

Let's see the declaration for Java.io.ByteArrayOutputStream class:

1. public class ByteArrayOutputStream extends OutputStream

Java ByteArrayOutputStream class constructors

Constructor Description

ByteArrayOutputStream() Creates a new byte array output stream with the initial capacity of 32

bytes, though its size increases if necessary.

ByteArrayOutputStream(int

size)

Creates a new byte array output stream, with a buffer capacity of the

specified size, in bytes.

30

Java ByteArrayOutputStream class methods

Method Description

int size() It is used to returns the current size of a buffer.

byte[] toByteArray() It is used to create a newly allocated byte array.

String toString() It is used for converting the content into a string decoding bytes using a

platform default character set.

String toString(String

charsetName)

It is used for converting the content into a string decoding bytes using a

specified charsetName.

void write(int b) It is used for writing the byte specified to the byte array output stream.

void write(byte[] b, int off,

int len

It is used for writing len bytes from specified byte array starting from

the offset off to the byte array output stream.

void writeTo(OutputStream

out)

It is used for writing the complete content of a byte array output stream

to the specified output stream.

void reset() It is used to reset the count field of a byte array output stream to zero

value.

void close() It is used to close the ByteArrayOutputStream.

Example of Java ByteArrayOutputStream

Let's see a simple example of java ByteArrayOutputStream class to write common data into 2 files: f1.txt and

f2.txt.

import java.io.*;

public class DataStreamExample {

public static void main(String args[])throws Exception{

 FileOutputStream fout1=new FileOutputStream("D:\\f1.txt");

 FileOutputStream fout2=new FileOutputStream("D:\\f2.txt");

31

 ByteArrayOutputStream bout=new ByteArrayOutputStream();

 bout.write(65);

 bout.writeTo(fout1);

 bout.writeTo(fout2);

 bout.flush();

 bout.close();//has no effect

 System.out.println("Success...");

 }

 }

Output:

Success...

f1.txt:

A

f2.txt:

A

Java ByteArrayInputStream Class

The ByteArrayInputStream is composed of two words: ByteArray and InputStream. As the name suggests, it

can be used to read byte array as input stream.

Java ByteArrayInputStream class contains an internal buffer which is used to read byte array as stream. In this

stream, the data is read from a byte array.

The buffer of ByteArrayInputStream automatically grows according to data.

Java ByteArrayInputStream class declaration

32

Let's see the declaration for Java.io.ByteArrayInputStream class:

1. public class ByteArrayInputStream extends InputStream

Java ByteArrayInputStream class constructors

Constructor Description

ByteArrayInputStream(byte[] ary) Creates a new byte array input stream which uses ary as its buffer array.

ByteArrayInputStream(byte[] ary, int

offset, int len)

Creates a new byte array input stream which uses ary as its buffer array that can

read up to specified len bytes of data from an array.

Java ByteArrayInputStream class methods

Methods Description

int available() It is used to return the number of remaining bytes that can be read from

the input stream.

int read() It is used to read the next byte of data from the input stream.

int read(byte[] ary, int off, int

len)

It is used to read up to len bytes of data from an array of bytes in the

input stream.

boolean markSupported() It is used to test the input stream for mark and reset method.

long skip(long x) It is used to skip the x bytes of input from the input stream.

void mark(int

readAheadLimit)

It is used to set the current marked position in the stream.

void reset() It is used to reset the buffer of a byte array.

void close() It is used for closing a ByteArrayInputStream.

33

Example of Java ByteArrayInputStream

Let's see a simple example of java ByteArrayInputStream class to read byte array as input stream.

import java.io.*;

public class ReadExample {

 public static void main(String[] args) throws IOException {

 byte[] buf = { 35, 36, 37, 38 };

 // Create the new byte array input stream

 ByteArrayInputStream byt = new ByteArrayInputStream(buf);

 int k = 0;

 while ((k = byt.read()) != -1) {

 //Conversion of a byte into character

 char ch = (char) k;

 System.out.println("ASCII value of Character is:" + k + "; Special character is: " + ch);

 }

 }

}

Output:

ASCII value of Character is:35; Special character is: #

ASCII value of Character is:36; Special character is: $

ASCII value of Character is:37; Special character is: %

ASCII value of Character is:38; Special character is: &

Java DataOutputStream Class

Java DataOutputStream class allows an application to write primitive Java data types to the output stream in a

machine-independent way.

Java application generally uses the data output stream to write data that can later be read by a data input stream.

Java DataOutputStream class declaration

Let's see the declaration for java.io.DataOutputStream class:

1. public class DataOutputStream extends FilterOutputStream implements DataOutput

Java DataOutputStream class methods

Method Description

34

int size() It is used to return the number of bytes written to the data output

stream.

void write(int b) It is used to write the specified byte to the underlying output stream.

void write(byte[] b, int off, int

len)

It is used to write len bytes of data to the output stream.

void writeBoolean(boolean v) It is used to write Boolean to the output stream as a 1-byte value.

void writeChar(int v) It is used to write char to the output stream as a 2-byte value.

void writeChars(String s) It is used to write string to the output stream as a sequence of

characters.

void writeByte(int v) It is used to write a byte to the output stream as a 1-byte value.

void writeBytes(String s) It is used to write string to the output stream as a sequence of bytes.

void writeInt(int v) It is used to write an int to the output stream

void writeShort(int v) It is used to write a short to the output stream.

void writeShort(int v) It is used to write a short to the output stream.

void writeLong(long v) It is used to write a long to the output stream.

void writeUTF(String str) It is used to write a string to the output stream using UTF-8 encoding

in portable manner.

void flush() It is used to flushes the data output stream.

Example of DataOutputStream class

In this example, we are writing the data to a text file testout.txt using DataOutputStream class.

35

import java.io.*;

public class OutputExample {

 public static void main(String[] args) throws IOException {

 FileOutputStream file = new FileOutputStream(D:\\testout.txt);

 DataOutputStream data = new DataOutputStream(file);

 data.writeInt(65);

 data.flush();

 data.close();

 System.out.println("Succcess...");

 }

}

Output:

Succcess...

testout.txt:

A

Java DataInputStream Class

Java DataInputStream class allows an application to read primitive data from the input stream in a machine-

independent way.

Java application generally uses the data output stream to write data that can later be read by a data input stream.

 Java DataInputStream class declaration

Let's see the declaration for java.io.DataInputStream class:

1. public class DataInputStream extends FilterInputStream implements DataInput

Java DataInputStream class Methods

Method Description

int read(byte[] b) It is used to read the number of bytes from the input stream.

int read(byte[] b, int off, int len) It is used to read len bytes of data from the input stream.

36

int readInt() It is used to read input bytes and return an int value.

byte readByte() It is used to read and return the one input byte.

char readChar() It is used to read two input bytes and returns a char value.

double readDouble() It is used to read eight input bytes and returns a double value.

boolean readBoolean() It is used to read one input byte and return true if byte is non zero,

false if byte is zero.

int skipBytes(int x) It is used to skip over x bytes of data from the input stream.

String readUTF() It is used to read a string that has been encoded using the UTF-8

format.

void readFully(byte[] b) It is used to read bytes from the input stream and store them into the

buffer array.

void readFully(byte[] b, int off,

int len)

It is used to read len bytes from the input stream.

Example of DataInputStream class

In this example, we are reading the data from the file testout.txt file.

import java.io.*;

public class DataStreamExample {

 public static void main(String[] args) throws IOException {

 InputStream input = new FileInputStream("D:\\testout.txt");

 DataInputStream inst = new DataInputStream(input);

 int count = input.available();

 byte[] ary = new byte[count];

 inst.read(ary);

 for (byte bt : ary) {

 char k = (char) bt;

 System.out.print(k+"-");

37

 }

 }

}

Here, we are assuming that you have following data in "testout.txt" file:

JAVA

Output:

J-A-V-A

Java FilterOutputStream Class

Java FilterOutputStream class implements the OutputStream class. It provides different sub classes such as

BufferedOutputStream and DataOutputStream to provide additional functionality. So it is less used individually.

Java FilterOutputStream class declaration

Let's see the declaration for java.io.FilterOutputStream class:

1. public class FilterOutputStream extends OutputStream

Java FilterOutputStream class Methods

Method Description

void write(int b) It is used to write the specified byte to the output stream.

void write(byte[] ary) It is used to write ary.length byte to the output stream.

void write(byte[] b, int off, int len) It is used to write len bytes from the offset off to the output stream.

void flush() It is used to flushes the output stream.

void close() It is used to close the output stream.

Example of FilterOutputStream class

import java.io.*;

public class FilterExample {

38

 public static void main(String[] args) throws IOException {

 File data = new File("D:\\testout.txt");

 FileOutputStream file = new FileOutputStream(data);

 FilterOutputStream filter = new FilterOutputStream(file);

 String s="Welcome to javaTpoint.";

 byte b[]=s.getBytes();

 filter.write(b);

 filter.flush();

 filter.close();

 file.close();

 System.out.println("Success...");

 }

}

Output:

Success...

testout.txt

Welcome to javaTpoint.

Java FilterInputStream Class

Java FilterInputStream class implements the InputStream. It contains different sub classes as

BufferedInputStream, DataInputStream for providing additional functionality. So it is less used individually.

Java FilterInputStream class declaration

Let's see the declaration for java.io.FilterInputStream class

1. public class FilterInputStream extends InputStream

Java FilterInputStream class Methods

Method Description

int available() It is used to return an estimate number of bytes that can be read from the

input stream.

int read() It is used to read the next byte of data from the input stream.

39

int read(byte[] b) It is used to read up to byte.length bytes of data from the input stream.

long skip(long n) It is used to skip over and discards n bytes of data from the input stream.

boolean

markSupported()

It is used to test if the input stream support mark and reset method.

void mark(int readlimit) It is used to mark the current position in the input stream.

void reset() It is used to reset the input stream.

void close() It is used to close the input stream.

Example of FilterInputStream class

import java.io.*;

public class FilterExample {

 public static void main(String[] args) throws IOException {

 File data = new File("D:\\testout.txt");

 FileInputStream file = new FileInputStream(data);

 FilterInputStream filter = new BufferedInputStream(file);

 int k =0;

 while((k=filter.read())!=-1){

 System.out.print((char)k);

 }

 file.close();

 filter.close();

 }

}

Here, we are assuming that you have following data in "testout.txt" file:

Welcome to javatpoint

Output:

Welcome to javatpoint

Character Stream Classes:

40

Java Reader

Java Reader is an abstract class for reading character streams. The only methods that a subclass must implement

are read(char[], int, int) and close(). Most subclasses, however, will override some of the methods to provide

higher efficiency, additional functionality, or both.

Some of the implementation class are BufferedReader, CharArrayReader, FilterReader, InputStreamReader,

PipedReader, StringReader

Fields

Modifier and Type Field Description

protected Object lock The object used to synchronize operations on this stream.

Constructor

41

Modifier Constructor Description

protected Reader() It creates a new character-stream reader whose critical sections will

synchronize on the reader itself.

protected Reader(Object

lock)

It creates a new character-stream reader whose critical sections will

synchronize on the given object.

Methods

Modifier and

Type

Method Description

abstract void close() It closes the stream and releases any system resources

associated with it.

void mark(int readAheadLimit) It marks the present position in the stream.

boolean markSupported() It tells whether this stream supports the mark()

operation.

int read() It reads a single character.

int read(char[] cbuf) It reads characters into an array.

abstract int read(char[] cbuf, int off, int

len)

It reads characters into a portion of an array.

int read(CharBuffer target) It attempts to read characters into the specified

character buffer.

boolean ready() It tells whether this stream is ready to be read.

void reset() It resets the stream.

42

long skip(long n) It skips characters.

Example

import java.io.*;

public class ReaderExample {

 public static void main(String[] args) {

 try {

 Reader reader = new FileReader("file.txt");

 int data = reader.read();

 while (data != -1) {

 System.out.print((char) data);

 data = reader.read();

 }

 reader.close();

 } catch (Exception ex) {

 System.out.println(ex.getMessage());

 }

 }

}

file.txt:

I love my country

Output:

I love my country

Java Writer

It is an abstract class for writing to character streams. The methods that a subclass must implement are

write(char[], int, int), flush(), and close(). Most subclasses will override some of the methods defined here to

provide higher efficiency, functionality or both.

Fields

Modifier and Type Field Description

protected Object lock The object used to synchronize operations on this stream.

Constructor

43

Modifier Constructor Description

protected Writer() It creates a new character-stream writer whose critical sections will

synchronize on the writer itself.

protected Writer(Object

lock)

It creates a new character-stream writer whose critical sections will

synchronize on the given object.

Methods

Modifier and

Type

Method Description

Writer append(char c) It appends the specified character to this

writer.

Writer append(CharSequence csq) It appends the specified character sequence

to this writer

Writer append(CharSequence csq, int

start, int end)

It appends a subsequence of the specified

character sequence to this writer.

abstract void close() It closes the stream, flushing it first.

abstract void flush() It flushes the stream.

void write(char[] cbuf) It writes an array of characters.

abstract void write(char[] cbuf, int off, int len) It writes a portion of an array of characters.

void write(int c) It writes a single character.

void write(String str) It writes a string.

44

void write(String str, int off, int len) It writes a portion of a string.

Java Writer Example

import java.io.*;

public class WriterExample {

 public static void main(String[] args) {

 try {

 Writer w = new FileWriter("output.txt");

 String content = "I love my country";

 w.write(content);

 w.close();

 System.out.println("Done");

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Output:

Done

output.txt:

I love my country

Java FileReader Class

Java FileReader class is used to read data from the file. It returns data in byte format like FileInputStream class.

It is character-oriented class which is used for file handling in java.

Java FileReader class declaration

Let's see the declaration for Java.io.FileReader class:

1. public class FileReader extends InputStreamReader

Constructors of FileReader class

45

Constructor Description

FileReader(String

file)

It gets filename in string. It opens the given file in read mode. If file doesn't exist,

it throws FileNotFoundException.

FileReader(File file) It gets filename in file instance. It opens the given file in read mode. If file doesn't

exist, it throws FileNotFoundException.

Methods of FileReader class

Method Description

int read() It is used to return a character in ASCII form. It returns -1 at the end of file.

void close() It is used to close the FileReader class.

Java FileReader Example

In this example, we are reading the data from the text file testout.txt using Java FileReader class.

import java.io.FileReader;

public class FileReaderExample {

 public static void main(String args[])throws Exception{

 FileReader fr=new FileReader("D:\\testout.txt");

 int i;

 while((i=fr.read())!=-1)

 System.out.print((char)i);

 fr.close();

 }

}

Here, we are assuming that you have following data in "testout.txt" file:

Welcome to javaTpoint.

Output:

Welcome to javaTpoint.

46

Java FileWriter Class

Java FileWriter class is used to write character-oriented data to a file. It is character-oriented class which is used

for file handling in java.

Unlike FileOutputStream class, you don't need to convert string into byte array because it provides method to

write string directly.

Java FileWriter class declaration

Let's see the declaration for Java.io.FileWriter class:

1. public class FileWriter extends OutputStreamWriter

Constructors of FileWriter class

Constructor Description

FileWriter(String file) Creates a new file. It gets file name in string.

FileWriter(File file) Creates a new file. It gets file name in File object.

Methods of FileWriter class

Method Description

void write(String text) It is used to write the string into FileWriter.

void write(char c) It is used to write the char into FileWriter.

void write(char[] c) It is used to write char array into FileWriter.

void flush() It is used to flushes the data of FileWriter.

void close() It is used to close the FileWriter.

Java FileWriter Example

47

In this example, we are writing the data in the file testout.txt using Java FileWriter class.

import java.io.FileWriter;

public class FileWriterExample {

 public static void main(String args[]){

 try{

 FileWriter fw=new FileWriter("D:\\testout.txt");

 fw.write("Welcome to javaTpoint.");

 fw.close();

 }catch(Exception e){System.out.println(e);}

 System.out.println("Success...");

 }

}

Output:

Success...

testout.txt:

Welcome to javaTpoint.

Java BufferedWriter Class

Java BufferedWriter class is used to provide buffering for Writer instances. It makes the performance fast. It

inherits Writer class. The buffering characters are used for providing the efficient writing of single arrays,

characters, and strings.

Class declaration

Let's see the declaration for Java.io.BufferedWriter class:

1. public class BufferedWriter extends Writer

Class constructors

Constructor Description

BufferedWriter(Writer wrt) It is used to create a buffered character output stream that uses the

default size for an output buffer.

48

BufferedWriter(Writer wrt, int

size)

It is used to create a buffered character output stream that uses the

specified size for an output buffer.

Class methods

Method Description

void newLine() It is used to add a new line by writing a line separator.

void write(int c) It is used to write a single character.

void write(char[] cbuf, int off, int len) It is used to write a portion of an array of characters.

void write(String s, int off, int len) It is used to write a portion of a string.

void flush() It is used to flushes the input stream.

void close() It is used to closes the input stream

Example of Java BufferedWriter

Let's see the simple example of writing the data to a text file testout.txt using Java BufferedWriter.

import java.io.*;

public class BufferedWriterExample {

public static void main(String[] args) throws Exception {

 FileWriter writer = new FileWriter("D:\\testout.txt");

 BufferedWriter buffer = new BufferedWriter(writer);

 buffer.write("Welcome to javaTpoint.");

 buffer.close();

 System.out.println("Success");

 }

}

Output:

success

49

testout.txt:

Welcome to javaTpoint.

Java BufferedReader Class

Java BufferedReader class is used to read the text from a character-based input stream. It can be used to read

data line by line by readLine() method. It makes the performance fast. It inherits Reader class.

Java BufferedReader class declaration

Let's see the declaration for Java.io.BufferedReader class:

1. public class BufferedReader extends Reader

Java BufferedReader class constructors

Constructor Description

BufferedReader(Reader rd) It is used to create a buffered character input stream that uses the

default size for an input buffer.

BufferedReader(Reader rd, int

size)

It is used to create a buffered character input stream that uses the

specified size for an input buffer.

Java BufferedReader class methods

Method Description

int read() It is used for reading a single character.

int read(char[] cbuf, int off,

int len)

It is used for reading characters into a portion of an array.

boolean markSupported() It is used to test the input stream support for the mark and reset method.

String readLine() It is used for reading a line of text.

50

boolean ready() It is used to test whether the input stream is ready to be read.

long skip(long n) It is used for skipping the characters.

void reset() It repositions the stream at a position the mark method was last called

on this input stream.

void mark(int

readAheadLimit)

It is used for marking the present position in a stream.

void close() It closes the input stream and releases any of the system resources

associated with the stream.

Java BufferedReader Example

In this example, we are reading the data from the text file testout.txt using Java BufferedReader class.

import java.io.*;

public class BufferedReaderExample {

 public static void main(String args[])throws Exception{

 FileReader fr=new FileReader("D:\\testout.txt");

 BufferedReader br=new BufferedReader(fr);

 int i;

 while((i=br.read())!=-1){

 System.out.print((char)i);

 }

 br.close();

 fr.close();

 }

}

Here, we are assuming that you have following data in "testout.txt" file:

Welcome to javaTpoint.

Output:

Welcome to javaTpoint.

51

Reading data from console by InputStreamReader and BufferedReader

In this example, we are connecting the BufferedReader stream with the InputStreamReader stream for reading

the line by line data from the keyboard.

import java.io.*;

public class BufferedReaderExample{

public static void main(String args[])throws Exception{

 InputStreamReader r=new InputStreamReader(System.in);

 BufferedReader br=new BufferedReader(r);

 System.out.println("Enter your name");

 String name=br.readLine();

 System.out.println("Welcome "+name);

}

}

Output:

Enter your name

Nakul Jain

Welcome Nakul Jain

Java CharArrayReader Class

The CharArrayReader is composed of two words: CharArray and Reader. The CharArrayReader class is used to

read character array as a reader (stream). It inherits Reader class.

Java CharArrayReader class declaration

Let's see the declaration for Java.io.CharArrayReader class:

1. public class CharArrayReader extends Reader

Java CharArrayReader class methods

52

Method Description

int read() It is used to read a single character

int read(char[] b, int off, int len) It is used to read characters into the portion of an array.

boolean ready() It is used to tell whether the stream is ready to read.

boolean markSupported() It is used to tell whether the stream supports mark() operation.

long skip(long n) It is used to skip the character in the input stream.

void mark(int readAheadLimit) It is used to mark the present position in the stream.

void reset() It is used to reset the stream to a most recent mark.

void close() It is used to closes the stream.

Example of CharArrayReader Class:

Let's see the simple example to read a character using Java CharArrayReader class.

import java.io.CharArrayReader;

public class CharArrayExample{

 public static void main(String[] ag) throws Exception {

 char[] ary = { 'j', 'a', 'v', 'a', 't', 'p', 'o', 'i', 'n', 't' };

 CharArrayReader reader = new CharArrayReader(ary);

 int k = 0;

 // Read until the end of a file

 while ((k = reader.read()) != -1) {

 char ch = (char) k;

 System.out.print(ch + " : ");

 System.out.println(k);

 }

 }

}

53

Output

j : 106

a : 97

v : 118

a : 97

t : 116

p : 112

o : 111

i : 105

n : 110

t : 116

Java CharArrayWriter Class

The CharArrayWriter class can be used to write common data to multiple files. This class inherits Writer class.

Its buffer automatically grows when data is written in this stream. Calling the close() method on this object has

no effect.

Java CharArrayWriter class declaration

Let's see the declaration for Java.io.CharArrayWriter class:

1. public class CharArrayWriter extends Writer

Java CharArrayWriter class Methods

Method Description

int size() It is used to return the current size of the buffer.

char[] toCharArray() It is used to return the copy of an input data.

String toString() It is used for converting an input data to a string.

CharArrayWriter append(char c) It is used to append the specified character to the

writer.

CharArrayWriter append(CharSequence csq) It is used to append the specified character sequence

to the writer.

54

CharArrayWriter append(CharSequence csq, int

start, int end)

It is used to append the subsequence of a specified

character to the writer.

void write(int c) It is used to write a character to the buffer.

void write(char[] c, int off, int len) It is used to write a character to the buffer.

void write(String str, int off, int len) It is used to write a portion of string to the buffer.

void writeTo(Writer out) It is used to write the content of buffer to different

character stream.

void flush() It is used to flush the stream.

void reset() It is used to reset the buffer.

void close() It is used to close the stream.

Example of CharArrayWriter Class:

In this example, we are writing a common data to 4 files a.txt, b.txt, c.txt and d.txt.

package com.javatpoint;

import java.io.CharArrayWriter;

import java.io.FileWriter;

public class CharArrayWriterExample {

public static void main(String args[])throws Exception{

 CharArrayWriter out=new CharArrayWriter();

 out.write("Welcome to javaTpoint");

 FileWriter f1=new FileWriter("D:\\a.txt");

 FileWriter f2=new FileWriter("D:\\b.txt");

 FileWriter f3=new FileWriter("D:\\c.txt");

 FileWriter f4=new FileWriter("D:\\d.txt");

 out.writeTo(f1);

 out.writeTo(f2);

 out.writeTo(f3);

 out.writeTo(f4);

55

 f1.close();

 f2.close();

 f3.close();

 f4.close();

 System.out.println("Success...");

 }

 }

Output

Success...

After executing the program, you can see that all files have common data: Welcome to javaTpoint.

a.txt:

Welcome to javaTpoint

b.txt:

Welcome to javaTpoint

c.txt:

Welcome to javaTpoint

d.txt:

Welcome to javaTpoint

Java PrintStream Class

The PrintStream class provides methods to write data to another stream. The PrintStream class automatically

flushes the data so there is no need to call flush() method. Moreover, its methods don't throw IOException.

Class declaration

Let's see the declaration for Java.io.PrintStream class:

1. public class PrintStream extends FilterOutputStream implements Closeable. Appendable

Methods of PrintStream class

Method Description

56

void print(boolean b) It prints the specified boolean value.

void print(char c) It prints the specified char value.

void print(char[] c) It prints the specified character array values.

void print(int i) It prints the specified int value.

void print(long l) It prints the specified long value.

void print(float f) It prints the specified float value.

void print(double d) It prints the specified double value.

void print(String s) It prints the specified string value.

void print(Object obj) It prints the specified object value.

void println(boolean b) It prints the specified boolean value and terminates the line.

void println(char c) It prints the specified char value and terminates the line.

void println(char[] c) It prints the specified character array values and terminates

the line.

void println(int i) It prints the specified int value and terminates the line.

void println(long l) It prints the specified long value and terminates the line.

void println(float f) It prints the specified float value and terminates the line.

void println(double d) It prints the specified double value and terminates the line.

void println(String s) It prints the specified string value and terminates the line.

57

void println(Object obj) It prints the specified object value and terminates the line.

void println() It terminates the line only.

void printf(Object format, Object... args) It writes the formatted string to the current stream.

void printf(Locale l, Object format,

Object... args)

It writes the formatted string to the current stream.

void format(Object format, Object... args) It writes the formatted string to the current stream using

specified format.

void format(Locale l, Object format,

Object... args)

It writes the formatted string to the current stream using

specified format.

Example of java PrintStream class

In this example, we are simply printing integer and string value.

import java.io.FileOutputStream;

import java.io.PrintStream;

public class PrintStreamTest{

 public static void main(String args[])throws Exception{

 FileOutputStream fout=new FileOutputStream("D:\\testout.txt ");

 PrintStream pout=new PrintStream(fout);

 pout.println(2016);

 pout.println("Hello Java");

 pout.println("Welcome to Java");

 pout.close();

 fout.close();

 System.out.println("Success?");

 }

}

Output

Success...

The content of a text file testout.txt is set with the below data

58

2016

Hello Java

Welcome to Java

Example of printf() method using java PrintStream class:

Let's see the simple example of printing integer value by format specifier using printf() method

of java.io.PrintStream class.

class PrintStreamTest{

 public static void main(String args[]){

 int a=19;

 System.out.printf("%d",a); //Note: out is the object of printstream

 }

}

Output

19

Java StringWriter Class

Java StringWriter class is a character stream that collects output from string buffer, which can be used to

construct a string. The StringWriter class inherits the Writer class.

In StringWriter class, system resources like network sockets and files are not used, therefore closing the

StringWriter is not necessary.

Java StringWriter class declaration

Let's see the declaration for Java.io.StringWriter class:

1. public class StringWriter extends Writer

Methods of StringWriter class

Method Description

void write(int c) It is used to write the single character.

void write(String str) It is used to write the string.

void write(String str, int off, int len) It is used to write the portion of a string.

59

void write(char[] cbuf, int off, int len) It is used to write the portion of an array of characters.

String toString() It is used to return the buffer current value as a string.

StringBuffer getBuffer() It is used t return the string buffer.

StringWriter append(char c) It is used to append the specified character to the writer.

StringWriter append(CharSequence csq) It is used to append the specified character sequence to

the writer.

StringWriter append(CharSequence csq, int

start, int end)

It is used to append the subsequence of specified

character sequence to the writer.

void flush() It is used to flush the stream.

void close() It is used to close the stream.

Java StringWriter Example

Let's see the simple example of StringWriter using BufferedReader to read file data from the stream.

import java.io.*;

public class StringWriterExample {

 public static void main(String[] args) throws IOException {

 char[] ary = new char[512];

 StringWriter writer = new StringWriter();

 FileInputStream input = null;

 BufferedReader buffer = null;

 input = new FileInputStream("D://testout.txt");

 buffer = new BufferedReader(new InputStreamReader(input, "UTF-8"));

 int x;

 while ((x = buffer.read(ary)) != -1) {

 writer.write(ary, 0, x);

 }

 System.out.println(writer.toString());

 writer.close();

 buffer.close();

60

 }

}

testout.txt:

Javatpoint provides tutorial in Java, Spring, Hibernate, Android, PHP etc.

Output:

Javatpoint provides tutorial in Java, Spring, Hibernate, Android, PHP etc.

Java StringReader Class

Java StringReader class is a character stream with string as a source. It takes an input string and changes it into

character stream. It inherits Reader class.

In StringReader class, system resources like network sockets and files are not used, therefore closing the

StringReader is not necessary.

Java StringReader class declaration

Let's see the declaration for Java.io.StringReader class:

1. public class StringReader extends Reader

Methods of StringReader class

Method Description

int read() It is used to read a single character.

int read(char[] cbuf, int off, int len) It is used to read a character into a portion of an array.

boolean ready() It is used to tell whether the stream is ready to be read.

boolean markSupported() It is used to tell whether the stream support mark() operation.

long skip(long ns) It is used to skip the specified number of character in a stream

void mark(int readAheadLimit) It is used to mark the mark the present position in a stream.

61

void reset() It is used to reset the stream.

void close() It is used to close the stream.

Java StringReader Example

import java.io.StringReader;

public class StringReaderExample {

 public static void main(String[] args) throws Exception {

 String srg = "Hello Java!! \nWelcome to Javatpoint.";

 StringReader reader = new StringReader(srg);

 int k=0;

 while((k=reader.read())!=-1){

 System.out.print((char)k);

 }

 }

}

Output:

Hello Java!!

Welcome to Javatpoint.

Java File Class

The File class is an abstract representation of file and directory pathname. A pathname can be either absolute or

relative.

The File class have several methods for working with directories and files such as creating new directories or

files, deleting and renaming directories or files, listing the contents of a directory etc.

Fields

Modifier Type Field Description

static String pathSeparator It is system-dependent path-separator character, represented

as a string for convenience.

static char pathSeparatorChar It is system-dependent path-separator character.

62

static String separator It is system-dependent default name-separator character,

represented as a string for convenience.

static char separatorChar It is system-dependent default name-separator character.

Constructors

Constructor Description

File(File parent, String

child)

It creates a new File instance from a parent abstract pathname and a child

pathname string.

File(String pathname) It creates a new File instance by converting the given pathname string into

an abstract pathname.

File(String parent, String

child)

It creates a new File instance from a parent pathname string and a child

pathname string.

File(URI uri) It creates a new File instance by converting the given file: URI into an

abstract pathname.

Useful Methods

Modifier

and Type

Method Description

static File createTempFile(String

prefix, String suffix)

It creates an empty file in the default temporary-file

directory, using the given prefix and suffix to generate

its name.

boolean createNewFile() It atomically creates a new, empty file named by this

abstract pathname if and only if a file with this name

does not yet exist.

63

boolean canWrite() It tests whether the application can modify the file

denoted by this abstract pathname.String[]

boolean canExecute() It tests whether the application can execute the file

denoted by this abstract pathname.

boolean canRead() It tests whether the application can read the file denoted

by this abstract pathname.

boolean isAbsolute() It tests whether this abstract pathname is absolute.

boolean isDirectory() It tests whether the file denoted by this abstract

pathname is a directory.

boolean isFile() It tests whether the file denoted by this abstract

pathname is a normal file.

String getName() It returns the name of the file or directory denoted by this

abstract pathname.

String getParent() It returns the pathname string of this abstract pathname's

parent, or null if this pathname does not name a parent

directory.

Path toPath() It returns a java.nio.file.Path object constructed from the

this abstract path.

URI toURI() It constructs a file: URI that represents this abstract

pathname.

File[] listFiles() It returns an array of abstract pathnames denoting the

files in the directory denoted by this abstract pathname

long getFreeSpace() It returns the number of unallocated bytes in the partition

named by this abstract path name.

64

String[] list(FilenameFilter filter) It returns an array of strings naming the files and

directories in the directory denoted by this abstract

pathname that satisfy the specified filter.

boolean mkdir() It creates the directory named by this abstract pathname.

Java File Example 1

import java.io.*;

public class FileDemo {

 public static void main(String[] args) {

 try {

 File file = new File("javaFile123.txt");

 if (file.createNewFile()) {

 System.out.println("New File is created!");

 } else {

 System.out.println("File already exists.");

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Output:

New File is created!

Random Access File:

The Java.io.RandomAccessFile class file behaves like a large array of bytes stored in the file

system.Instances of this class support both reading and writing to a random access file.

Class declaration

Following is the declaration for Java.io.RandomAccessFile class −

public class RandomAccessFile

 extends Object

 implements DataOutput, DataInput, Closeable

65

Class constructors

S.N. Constructor & Description

1 RandomAccessFile(File file, String mode)

This creates a random access file stream to read from, and optionally to write to,

the file specified by the File argument.

2 RandomAccessFile(File file, String mode)

This creates a random access file stream to read from, and optionally to write to, a

file with the specified name.

The following example shows the usage of java.io.RandomAccessFile.readLine() method.

import java.io.*;

public class RandomAccessFileDemo {

 public static void main(String[] args) {

 try {

 // create a new RandomAccessFile with filename test

 RandomAccessFile raf = new RandomAccessFile("c:/test.txt", "rw");

 // write something in the file

 raf.writeUTF("Hello World");

 // set the file pointer at 0 position

 raf.seek(0);

 // print the line

 System.out.println("" + raf.readLine());

 // set the file pointer at 0 position

 raf.seek(0);

 // write something in the file

 raf.writeUTF("This is an example \n Hello World");

 raf.seek(0);

 // print the line

 System.out.println("" + raf.readLine());

66

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 }

}

Assuming we have a text file c:/test.txt, which has the following content. This file will be used as an input for

our example program −

ABCDE

Let us compile and run the above program, this will produce the following result −

Hello World

This is an example

Java Console Class

The Java Console class is be used to get input from console. It provides methods to read texts and passwords.

If you read password using Console class, it will not be displayed to the user.

The java.io.Console class is attached with system console internally. The Console class is introduced since 1.5.

Let's see a simple example to read text from console.

1. String text=System.console().readLine();

2. System.out.println("Text is: "+text);

Java Console class declaration

Let's see the declaration for Java.io.Console class:

1. public final class Console extends Object implements Flushable

Java Console class methods

Method Description

Reader reader() It is used to retrieve the reader object associated with the console

String readLine() It is used to read a single line of text from the console.

67

String readLine(String fmt, Object...

args)

It provides a formatted prompt then reads the single line of text

from the console.

char[] readPassword() It is used to read password that is not being displayed on the

console.

char[] readPassword(String fmt,

Object... args)

It provides a formatted prompt then reads the password that is not

being displayed on the console.

Console format(String fmt, Object...

args)

It is used to write a formatted string to the console output stream.

Console printf(String format,

Object... args)

It is used to write a string to the console output stream.

PrintWriter writer() It is used to retrieve the PrintWriter object associated with the

console.

void flush() It is used to flushes the console.

How to get the object of Console

System class provides a static method console() that returns the singleton instance of Console class.

1. public static Console console(){}

Let's see the code to get the instance of Console class.

1. Console c=System.console();

Java Console Example

import java.io.Console;

class ReadStringTest{

public static void main(String args[]){

Console c=System.console();

System.out.println("Enter your name: ");

String n=c.readLine();

System.out.println("Welcome "+n);

68

}

}

Output

Enter your name: Nakul Jain

Welcome Nakul Jain

Java Console Example to read password

import java.io.Console;

class ReadPasswordTest{

public static void main(String args[]){

Console c=System.console();

System.out.println("Enter password: ");

char[] ch=c.readPassword();

String pass=String.valueOf(ch);//converting char array into string

System.out.println("Password is: "+pass);

}

}

Output

Enter password:

Password is: 123

Serialization in Java

Serialization in java is a mechanism of writing the state of an object into a byte stream.

It is mainly used in Hibernate, RMI, JPA, EJB and JMS technologies.

The reverse operation of serialization is called deserialization.

Advantage of Java Serialization

It is mainly used to travel object's state on the network (known as marshaling).

69

java.io.Serializable interface

Serializable is a marker interface (has no data member and method). It is used to "mark" java classes so that

objects of these classes may get certain capability. The Cloneable and Remote are also marker interfaces.

It must be implemented by the class whose object you want to persist.

The String class and all the wrapper classes implements java.io.Serializable interface by default.

Let's see the example given below:

import java.io.Serializable;

public class Student implements Serializable{

 int id;

 String name;

 public Student(int id, String name) {

 this.id = id;

 this.name = name;

 }

}

In the above example, Student class implements Serializable interface. Now its objects can be converted into

stream.

ObjectOutputStream class

The ObjectOutputStream class is used to write primitive data types and Java objects to an OutputStream. Only

objects that support the java.io.Serializable interface can be written to streams.

Constructor

70

1) public ObjectOutputStream(OutputStream out) throws IOException {}creates an ObjectOutputStream

that writes to the specified OutputStream.

Important Methods

Method Description

1) public final void writeObject(Object obj) throws

IOException {}

writes the specified object to the

ObjectOutputStream.

2) public void flush() throws IOException {} flushes the current output stream.

3) public void close() throws IOException {} closes the current output stream.

Example of Java Serialization

In this example, we are going to serialize the object of Student class. The writeObject() method of

ObjectOutputStream class provides the functionality to serialize the object. We are saving the state of the object

in the file named f.txt.

import java.io.*;

class Persist{

 public static void main(String args[])throws Exception{

 Student s1 =new Student(211,"ravi");

 FileOutputStream fout=new FileOutputStream("f.txt");

 ObjectOutputStream out=new ObjectOutputStream(fout);

 out.writeObject(s1);

 out.flush();

 System.out.println("success");

 }

}

success

Deserialization in java

Deserialization is the process of reconstructing the object from the serialized state.It is the reverse operation of

serialization.

ObjectInputStream class

An ObjectInputStream deserializes objects and primitive data written using an ObjectOutputStream.

71

Constructor

1) public ObjectInputStream(InputStream in)

throws IOException {}

creates an ObjectInputStream that reads from

the specified InputStream.

Important Methods

Method Description

1) public final Object readObject() throws IOException,

ClassNotFoundException{}

reads an object from the input

stream.

2) public void close() throws IOException {} closes ObjectInputStream.

Example of Java Deserialization

import java.io.*;

class Depersist{

 public static void main(String args[])throws Exception{

 ObjectInputStream in=new ObjectInputStream(new FileInputStream("f.txt"));

 Student s=(Student)in.readObject();

 System.out.println(s.id+" "+s.name);

 in.close();

 }

}

211 ravi

Java Enum

Enum in java is a data type that contains fixed set of constants.

It can be used for days of the week (SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,

FRIDAY and SATURDAY) , directions (NORTH, SOUTH, EAST and WEST) etc. The java enum constants

are static and final implicitly. It is available from JDK 1.5.

Java Enums can be thought of as classes that have fixed set of constants.

Points to remember for Java Enum

o enum improves type safety

72

o enum can be easily used in switch

o enum can be traversed

o enum can have fields, constructors and methods

o enum may implement many interfaces but cannot extend any class because it internally extends Enum

class

Simple example of java enum

class EnumExample1{

public enum Season { WINTER, SPRING, SUMMER, FALL }

public static void main(String[] args) {

for (Season s : Season.values())

System.out.println(s);

}}

Output:WINTER

 SPRING

 SUMMER

 FALL

Autoboxing and Unboxing:

The automatic conversion of primitive data types into its equivalent Wrapper type is known as boxing and

opposite operation is known as unboxing. This is the new feature of Java5. So java programmer doesn't need to

write the conversion code.

Advantage of Autoboxing and Unboxing:

No need of conversion between primitives and Wrappers manually so less coding is required.

Simple Example of Autoboxing in java:

class BoxingExample1{

 public static void main(String args[]){

 int a=50;

 Integer a2=new Integer(a);//Boxing

 Integer a3=5;//Boxing

 System.out.println(a2+" "+a3);

73

 }

}

Output:50 5

download this example

Simple Example of Unboxing in java:

The automatic conversion of wrapper class type into corresponding primitive type, is known as Unboxing. Let's

see the example of unboxing:

class UnboxingExample1{

 public static void main(String args[]){

 Integer i=new Integer(50);

 int a=i;

 System.out.println(a);

 }

}

Output:50

Generics in Java

The Java Generics programming is introduced in J2SE 5 to deal with type-safe objects.

Before generics, we can store any type of objects in collection i.e. non-generic. Now generics, forces the java

programmer to store specific type of objects.

Advantage of Java Generics

There are mainly 3 advantages of generics. They are as follows:

1) Type-safety : We can hold only a single type of objects in generics. It doesn’t allow to store other objects.

2) Type casting is not required: There is no need to typecast the object.

Before Generics, we need to type cast.

1. List list = new ArrayList();

2. list.add("hello");

3. String s = (String) list.get(0);//typecasting

After Generics, we don't need to typecast the object.

https://www.javatpoint.com/src/newjdk/boxing1.zip

74

1. List<String> list = new ArrayList<String>();

2. list.add("hello");

3. String s = list.get(0);

3) Compile-Time Checking: It is checked at compile time so problem will not occur at runtime. The good

programming strategy says it is far better to handle the problem at compile time than runtime.

1. List<String> list = new ArrayList<String>();

2. list.add("hello");

3. list.add(32);//Compile Time Error

Syntax to use generic collection

1. ClassOrInterface<Type>

Example to use Generics in java

1. ArrayList<String>

Full Example of Generics in Java

Here, we are using the ArrayList class, but you can use any collection class such as ArrayList, LinkedList,

HashSet, TreeSet, HashMap, Comparator etc.

import java.util.*;

class TestGenerics1{

public static void main(String args[]){

ArrayList<String> list=new ArrayList<String>();

list.add("rahul");

list.add("jai");

//list.add(32);//compile time error

String s=list.get(1);//type casting is not required

System.out.println("element is: "+s);

Iterator<String> itr=list.iterator();

while(itr.hasNext()){

System.out.println(itr.next());

}

}

}

Output:element is: jai

 rahul

 jai

75

Generic class

A class that can refer to any type is known as generic class. Here, we are using T type parameter to create the

generic class of specific type.

Let’s see the simple example to create and use the generic class.

Creating generic class:

class MyGen<T>{

T obj;

void add(T obj){this.obj=obj;}

T get(){return obj;}

}

The T type indicates that it can refer to any type (like String, Integer, Employee etc.). The type you specify for

the class, will be used to store and retrieve the data.

Using generic class:

Let’s see the code to use the generic class.

class TestGenerics3{

public static void main(String args[]){

MyGen<Integer> m=new MyGen<Integer>();

m.add(2);

//m.add("vivek");//Compile time error

System.out.println(m.get());

}}

Output:2

Type Parameters

The type parameters naming conventions are important to learn generics thoroughly. The commonly type

parameters are as follows:

1. T - Type

2. E - Element

3. K - Key

4. N - Number

5. V - Value

Generic Method

Like generic class, we can create generic method that can accept any type of argument.

76

Let’s see a simple example of java generic method to print array elements. We are using here E to denote the

element.

public class TestGenerics4{

 public static < E > void printArray(E[] elements) {

 for (E element : elements){

 System.out.println(element);

 }

 System.out.println();

 }

 public static void main(String args[]) {

 Integer[] intArray = { 10, 20, 30, 40, 50 };

 Character[] charArray = { 'J', 'A', 'V', 'A', 'T','P','O','I','N','T' };

 System.out.println("Printing Integer Array");

 printArray(intArray);

 System.out.println("Printing Character Array");

 printArray(charArray);

 }

}

Output:Printing Integer Array

 10

 20

 30

 40

 50

 Printing Character Array

 J

 A

 V

 A

 T

 P

 O

 I

 N

 T

	Java Package
	Advantages of Java Package
	Simple example of java package
	How to compile java package
	How to run java package program
	How to access package from another package?
	1) Using packagename.*

	Example of package that import the packagename.*
	2) Using packagename.classname

	Example of package by import package.classname
	3) Using fully qualified name

	Example of package by import fully qualified name
	Note: If you import a package, subpackages will not be imported.
	Note: Sequence of the program must be package then import then class.

	Subpackage in java
	The standard of defining package is domain.company.package e.g. com.javatpoint.bean or org.sssit.dao.
	Example of Subpackage

	How to send the class file to another directory or drive?
	To Compile:
	To Run:
	Another way to run this program by -classpath switch of java:

	Interface in Java
	Why use Java interface?
	Java 8 Interface Improvement
	Internal addition by compiler
	The java compiler adds public and abstract keywords before the interface method. More, it adds public, static and final keywords before data members.
	Understanding relationship between classes and interfaces

	Java Interface Example
	Java Interface Example: Drawable
	Java Interface Example: Bank
	Multiple inheritance in Java by interface
	Q) Multiple inheritance is not supported through class in java but it is possible by interface, why?
	Interface inheritance

	Java Nested Interface
	Points to remember for nested interfaces
	Syntax of nested interface which is declared within the interface
	Syntax of nested interface which is declared within the class
	Example of nested interface which is declared within the interface
	Internal code generated by the java compiler for nested interface Message
	Example of nested interface which is declared within the class

	Difference between abstract class and interface
	Stream:
	A stream is a sequence of data.In Java a stream is composed of bytes. It's called a stream because it is like a stream of water that continues to flow.
	Byte Streams
	Character Streams

	OutputStream vs InputStream
	OutputStream
	InputStream

	OutputStream class
	Useful methods of OutputStream
	OutputStream Hierarchy

	InputStream class
	Useful methods of InputStream
	InputStream Hierarchy

	Java FileOutputStream Class
	FileOutputStream class declaration
	FileOutputStream class methods
	Java FileOutputStream Example 1: write byte
	Java FileOutputStream example 2: write string

	Java FileInputStream Class
	Java FileInputStream class declaration
	Java FileInputStream class methods
	Java FileInputStream example 1: read single character
	Java FileInputStream example 2: read all characters

	Java BufferedOutputStream Class
	Java BufferedOutputStream class declaration
	Java BufferedOutputStream class constructors
	Java BufferedOutputStream class methods
	Example of BufferedOutputStream class:

	Java BufferedInputStream Class
	Java BufferedInputStream class declaration
	Java BufferedInputStream class constructors
	Java BufferedInputStream class methods
	Example of Java BufferedInputStream

	Java SequenceInputStream Class
	Java SequenceInputStream Class declaration
	Constructors of SequenceInputStream class
	Methods of SequenceInputStream class
	Java SequenceInputStream Example
	Example that reads the data from two files and writes into another file
	SequenceInputStream example that reads data using enumeration

	Java ByteArrayOutputStream Class
	Java ByteArrayOutputStream class declaration
	Java ByteArrayOutputStream class constructors
	Java ByteArrayOutputStream class methods
	Example of Java ByteArrayOutputStream

	Java ByteArrayInputStream Class
	Java ByteArrayInputStream class declaration
	Java ByteArrayInputStream class constructors
	Java ByteArrayInputStream class methods
	Example of Java ByteArrayInputStream

	Java DataOutputStream Class
	Java DataOutputStream class declaration
	Java DataOutputStream class methods
	Example of DataOutputStream class

	Java DataInputStream Class
	Java DataInputStream class declaration
	Java DataInputStream class Methods
	Example of DataInputStream class

	Java FilterOutputStream Class
	Java FilterOutputStream class declaration
	Java FilterOutputStream class Methods
	Example of FilterOutputStream class

	Java FilterInputStream Class
	Java FilterInputStream class declaration
	Java FilterInputStream class Methods
	Example of FilterInputStream class

	Java Reader
	Fields
	Constructor
	Methods
	Example

	Java Writer
	Fields
	Constructor
	Methods
	Java Writer Example

	Java FileReader Class
	Java FileReader class declaration
	Constructors of FileReader class
	Methods of FileReader class
	Java FileReader Example

	Java FileWriter Class
	Java FileWriter class declaration
	Constructors of FileWriter class
	Methods of FileWriter class
	Java FileWriter Example

	Java BufferedWriter Class
	Class declaration
	Class constructors
	Class methods
	Example of Java BufferedWriter

	Java BufferedReader Class
	Java BufferedReader class declaration
	Java BufferedReader class constructors
	Java BufferedReader class methods
	Java BufferedReader Example
	Reading data from console by InputStreamReader and BufferedReader

	Java CharArrayReader Class
	Java CharArrayReader class declaration
	Java CharArrayReader class methods
	Example of CharArrayReader Class:

	Java CharArrayWriter Class
	Java CharArrayWriter class declaration
	Java CharArrayWriter class Methods
	Example of CharArrayWriter Class:

	Java PrintStream Class
	Class declaration
	Methods of PrintStream class
	Example of java PrintStream class
	Example of printf() method using java PrintStream class:

	Java StringWriter Class
	Java StringWriter class declaration
	Methods of StringWriter class
	Java StringWriter Example

	Java StringReader Class
	Java StringReader class declaration
	Methods of StringReader class
	Java StringReader Example

	Java File Class
	Fields
	Constructors
	Useful Methods
	Java File Example 1
	Class declaration
	Class constructors

	Java Console Class
	Java Console class declaration
	Java Console class methods
	How to get the object of Console
	Java Console Example
	Java Console Example to read password

	Serialization in Java
	Advantage of Java Serialization
	java.io.Serializable interface
	ObjectOutputStream class
	Constructor
	Important Methods

	Example of Java Serialization
	Deserialization in java
	ObjectInputStream class
	Constructor
	Important Methods
	Example of Java Deserialization

	Java Enum
	Points to remember for Java Enum
	Simple example of java enum

	Autoboxing and Unboxing:
	Advantage of Autoboxing and Unboxing:
	Simple Example of Autoboxing in java:
	Simple Example of Unboxing in java:

	Generics in Java
	Advantage of Java Generics
	Full Example of Generics in Java
	Generic class
	Type Parameters
	Generic Method

